Tuesday, July 3, 2012

College Algebra, Chapter 2, 2.3, Section 2.3, Problem 56

Find all real solutions of the equation $x^4 - 8x^2 + 2 = 0$

$
\begin{equation}
\begin{aligned}
x^4 - 8x^2 + 2 &= 0\\
\\
w^2 - 8w + 2 &= 0 && \text{Let } w = x^2\\
\\
w^2 - 8w &= -2 && \text{Subtract } 2\\
\\
w^2 - 8w + 16 &= -2 + 16 && \text{Complete the square: Add } \left( -\frac{8}{2} \right)^2 = 16\\
\\
(w - 4)^2 &= 14 && \text{Perfect Square}\\
\\
(w - 4) &= \pm \sqrt{14} && \text{Take the square root}\\
\\
w &= 4 \pm \sqrt{14} && \text{Add }4\\
\\
w = 4 + \sqrt{14} \text{ and } w &= 4 - \sqrt{14} && \text{Solve for } w\\
\\
x^2 = 4 + \sqrt{14} \text{ and } x^2 &= 4 - \sqrt{14} && \text{Substitute } w = x^2\\
\\
x = \pm \sqrt{4+\sqrt{14}} \text{ and } x &= \pm \sqrt{4 - \sqrt{4}} && \text{Take the square root}
\end{aligned}
\end{equation}
$


Thus, the solutions are
$x = \sqrt{4+\sqrt{14}},\quad x = - \sqrt{4+\sqrt{14}},\quad x = \sqrt{4-\sqrt{14}},$ and $ x = -\sqrt{4-\sqrt{14}}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...