(a) Determine a number $\delta$ such that if $| x - 2 | < \delta$ then $| 4x - 8 | < \varepsilon$, where $\varepsilon = 0.1$
Based from the definition,
$
\begin{equation}
\begin{aligned}
\begin{array}{c}
\text{ if } |x -a| < \delta \text{ then } |f(x) - L| < \varepsilon\\
\text{ if } |x -2| < \delta \text{ then } |4x - 8| < 0.1
\end{array}
\end{aligned}
\end{equation}
$
To satisfy inequatlity $| x - 2 | < \delta $
We want,
$
\begin{equation}
\begin{aligned}
& | 4x - 8 | < 0 . 1
&& \phantom{x}\\
& | 4(x - 2) | < 0.1
&& \text{ Factor}\\
& \frac{4 | x - 2 |}{4} < \frac{0.1}{4}
&& \text{ Divide both sides by 4}\\
& | x- 2| < 0.025
&&
\end{aligned}
\end{equation}
$
Hence,
$\quad \delta < 0.025$
(b) Repeat part (a), where $\varepsilon = 0.01$
Using the definition,
$
\begin{equation}
\begin{aligned}
& | 4x - 8 | < 0.01
&& \\
& 4| x - 2 | < 0.001
&& \text{ Factor }\\
& \frac{4| x-2|}{4} < \frac{0.01}{4}
&& \text{ Divide both sides by 4}\\
& |x-2| < 0.0025
&& \\
\end{aligned}
\end{equation}
$
Hence,
$\quad \delta < 0.0025$
This means that by keeping $x$ within $0.0025$ of $2$, we are able to keep $f(x)$ within $0.1$ of $8$.
Although we chose $\delta = 0.0025$, any smaller positive value of $\delta$ would also have work.
No comments:
Post a Comment