Determine the integral ∫cosθcos5(sinθ)dθ
Let u=sinθ, then du=cosθdθ. Thus,
∫cosθcos5(sinθ)dθ=∫cos5udu∫cos5udu=∫cos4ucosudu∫cos5udu=∫(cos2u)2cosuduApply Pythagorean Idendity cos2u+sin2u=1∫cos5udu=∫(1−sin2u)2cosudu
Let v=sinu, then dv=cosudu. Thus,
∫(1−sin2u)2cosudu=∫(1−v2)2dv∫(1−sin2u)2cosudu=∫(1−2v2+v4)dv∫(1−sin2u)2cosudu=v−2v2+12+1+v4+14+1+c∫(1−sin2u)2cosudu=v−2v33+v55+cSubstitute value of v∫(1−sin2u)2cosudu=sinu−2(sin)33+(sinu)55+c∫(1−sin2u)2cosudu=sinu−2sin3u3+sin5uu+cSubstitute value of u∫(1−sin2u)2cosudu=sin(sinθ)−2sin3(sinθ)3+sin5(sinθ)5+c
@ 2nd term
18∫π0cos2tdt=18∫2π0cosu⋅du218∫π0cos2tdt=116∫2π0cosudu18∫π0cos2tdt=116[sinu]2π018∫π0cos2tdt=116(sin2π−sin0)18∫π0cos2tdt=116(0)18∫π0cos2tdt=0
@ 3rd term
18∫π0cos22tdt=18∫2π0cos2u⋅du218∫π0cos22tdt=116∫2π0cos2uduApply half-angle formula cos2u=2cos2u−118∫π0cos22tdt=116∫2π0(cos2u+12)du18∫π0cos22tdt=132∫2π0(cos2u+1)du
Let v=2u, then dv=2du, so du=dv2. When u=0,v=0 and when u=2π,v=4π
132∫320(cos2u+1)du=132∫4π0(cosv+1)⋅dv2132∫320(cos2u+1)du=164∫4π0(cosv+1)dv132∫320(cos2u+1)du=164[sinv+v]4π0132∫320(cos2u+1)du=164(sin4π+4π−sin0−0)132∫320(cos2u+1)du=164(0+4π−0−0)132∫320(cos2u+1)du=4π64132∫320(cos2u+1)du=π16
@ 4th term
18∫π0cos32tdt=18∫2π0cos3u⋅du218∫π0cos32tdt=116∫2π0cos3udu18∫π0cos32tdt=116∫2π0(cos2u)(cosu)duApply Trigonometric Identities cos2u+sin2u=118∫π0cos32tdt=116∫2π0(1−sin2u)(cosu)du
Let v=sinu, then dv=cosudu. When u=0,v=0 and when u=2π,v=0. Therefore,
116∫2π0(1−sin2u)(cosudu)=116∫00(1−v2)dv116∫2π0(1−sin2u)(cosudu)=116[v−v33]00116∫2π0(1−sin2u)(cosudu)=116(0)116∫2π0(1−sin2u)(cosudu)=0
Combine the results of integration term by term
∫π0sin2tcos4tdt=π8+0−π16−0∫π0sin2tcos4tdt=2π+0−π−016∫π0sin2tcos4tdt=π16
No comments:
Post a Comment