Friday, May 25, 2012

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 16

Determine the integral cosθcos5(sinθ)dθ

Let u=sinθ, then du=cosθdθ. Thus,


cosθcos5(sinθ)dθ=cos5uducos5udu=cos4ucosuducos5udu=(cos2u)2cosuduApply Pythagorean Idendity cos2u+sin2u=1cos5udu=(1sin2u)2cosudu


Let v=sinu, then dv=cosudu. Thus,


(1sin2u)2cosudu=(1v2)2dv(1sin2u)2cosudu=(12v2+v4)dv(1sin2u)2cosudu=v2v2+12+1+v4+14+1+c(1sin2u)2cosudu=v2v33+v55+cSubstitute value of v(1sin2u)2cosudu=sinu2(sin)33+(sinu)55+c(1sin2u)2cosudu=sinu2sin3u3+sin5uu+cSubstitute value of u(1sin2u)2cosudu=sin(sinθ)2sin3(sinθ)3+sin5(sinθ)5+c


@ 2nd term


18π0cos2tdt=182π0cosudu218π0cos2tdt=1162π0cosudu18π0cos2tdt=116[sinu]2π018π0cos2tdt=116(sin2πsin0)18π0cos2tdt=116(0)18π0cos2tdt=0


@ 3rd term


18π0cos22tdt=182π0cos2udu218π0cos22tdt=1162π0cos2uduApply half-angle formula cos2u=2cos2u118π0cos22tdt=1162π0(cos2u+12)du18π0cos22tdt=1322π0(cos2u+1)du


Let v=2u, then dv=2du, so du=dv2. When u=0,v=0 and when u=2π,v=4π


132320(cos2u+1)du=1324π0(cosv+1)dv2132320(cos2u+1)du=1644π0(cosv+1)dv132320(cos2u+1)du=164[sinv+v]4π0132320(cos2u+1)du=164(sin4π+4πsin00)132320(cos2u+1)du=164(0+4π00)132320(cos2u+1)du=4π64132320(cos2u+1)du=π16


@ 4th term


18π0cos32tdt=182π0cos3udu218π0cos32tdt=1162π0cos3udu18π0cos32tdt=1162π0(cos2u)(cosu)duApply Trigonometric Identities cos2u+sin2u=118π0cos32tdt=1162π0(1sin2u)(cosu)du


Let v=sinu, then dv=cosudu. When u=0,v=0 and when u=2π,v=0. Therefore,


1162π0(1sin2u)(cosudu)=11600(1v2)dv1162π0(1sin2u)(cosudu)=116[vv33]001162π0(1sin2u)(cosudu)=116(0)1162π0(1sin2u)(cosudu)=0


Combine the results of integration term by term


π0sin2tcos4tdt=π8+0π160π0sin2tcos4tdt=2π+0π016π0sin2tcos4tdt=π16

No comments:

Post a Comment