Thursday, May 10, 2012

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 18

Determine the integral cot5θsin4θdθ


cot5θsin4θdθ=cos5θsin5θsin4θdθcot5θsin4θdθ=cos5θsinθdθcot5θsin4θdθ=cos4θsinθdθcot5θsin4θdθ=(cos2θ)2sinθcosθdθApply Pythagorean Identities cos2θ+sin2θ=1cot5θsin4θdθ=(1sin2θ)2sinθcosθdθ


Let u=sinθ, then du=cosθdθ. Thus,


(1sin2θ)2sinθcosθdθ=(1u2)2udu(1sin2θ)2sinθcosθdθ=(12u2+u4u)du(1sin2θ)2sinθcosθdθ=(1u2u2u+u4u)du(1sin2θ)2sinθcosθdθ=(1u2u+u3)du(1sin2θ)2sinθcosθdθ=lnu2u1+11+1+u3+13+1+c(1sin2θ)2sinθcosθdθ=lnU\cancel2u2\cancel2+u44+c(1sin2θ)2sinθcosθdθ=lnuu2+u44+cSubstitute value of u(1sin2θ)2sinθcosθdθ=ln(sinθ)(sinθ)2+(sinθ)44+c(1sin2θ)2sinθcosθdθ=ln(sinθ)sin2θ+sin4θ4+c

No comments:

Post a Comment