Determine the integral ∫cot5θsin4θdθ
∫cot5θsin4θdθ=∫cos5θsin5θsin4θdθ∫cot5θsin4θdθ=∫cos5θsinθdθ∫cot5θsin4θdθ=∫cos4θsinθdθ∫cot5θsin4θdθ=∫(cos2θ)2sinθcosθdθApply Pythagorean Identities cos2θ+sin2θ=1∫cot5θsin4θdθ=∫(1−sin2θ)2sinθcosθdθ
Let u=sinθ, then du=cosθdθ. Thus,
∫(1−sin2θ)2sinθcosθdθ=∫(1−u2)2udu∫(1−sin2θ)2sinθcosθdθ=∫(1−2u2+u4u)du∫(1−sin2θ)2sinθcosθdθ=∫(1u−2u2u+u4u)du∫(1−sin2θ)2sinθcosθdθ=∫(1u−2u+u3)du∫(1−sin2θ)2sinθcosθdθ=lnu−2u1+11+1+u3+13+1+c∫(1−sin2θ)2sinθcosθdθ=lnU−\cancel2u2\cancel2+u44+c∫(1−sin2θ)2sinθcosθdθ=lnu−u2+u44+cSubstitute value of u∫(1−sin2θ)2sinθcosθdθ=ln(sinθ)−(sinθ)2+(sinθ)44+c∫(1−sin2θ)2sinθcosθdθ=ln(sinθ)−sin2θ+sin4θ4+c
No comments:
Post a Comment