Solve the inequality $|0.5x - 3.5| + 0.2 \geq 0.6$.
$
\begin{equation}
\begin{aligned}
|0.5x - 3.5| + 0.2 \geq & 0.6 \\
|0.5x - 3.5| \geq & 0.4
\end{aligned}
\end{equation}
$
The absolute value inequality is rewritten as
$0.5x - 3.5 \geq 0.4$ or $0.5x - 3.5 \leq -0.4$,
because $0.5x - 3.5$ must represent a number that is more than $0.4$ units from on either side of the number line. We can solve the compound inequality.
$
\begin{equation}
\begin{aligned}
0.5x - 3.5 \geq & 0.4 && \text{or} &&& 0.5x - 3.5 \leq & -0.4
&&
\\
5x - 35 \geq & 4 && \text{or} &&& 5x - 35 \leq & -4
&& \text{Multiply each side by } 10
\\
5x \geq & 39 && \text{or} &&& 5x \leq & 31
&& \text{Add each side by } 35
\\
x \geq & \frac{39}{5} && \text{or} &&& x \leq & \frac{31}{5}
&&
\end{aligned}
\end{equation}
$
The solution set is $\displaystyle \left( \frac{31}{5}, \frac{39}{5} \right)$.
No comments:
Post a Comment