Determine the derivative of the function y=tan−1(x−√1+x2) and simplify if possible.
If y=tan−1(x−√1+x2), then
y′=11+(x−√1+x2)2⋅ddx(x−√1+x2)y′=11+(x2−2x√1+x2+(1+x2))⋅(1−2x2√1+x2)y′=1−x√1+x22+2x2−2x√1+x2y′=√1+x2−x√1+x22(1+x2−x√1+x2)y′=√1+x2−x2√1+x2(1+x2−x√1+x2)
No comments:
Post a Comment