Monday, April 23, 2012

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 49

Prove that the function f(x)=|x6| is not differentiable at 6. Find formula for f and sketch its graph.

From the definition of absolute value,

f(x)=|x6|={x6ifx>0(x6)ifx<0f(x)={x6ifx>0x+6ifx<0


From the definition of derivative,
f+(x)=limh0+f(x+h)f(x)h and f(x)=limh0f(x+h)f(x)h

For Right Hand,

f+(x)=limh0+x+h6(x6)hf+(x)=limh0+\cancel6\cancelx+\cancel6hf+(x)=limh0+\cancelh\cancelhf+(x)=limh0+1f+(6)=1


For Left Hand,

f(x)=limh0(x+h)+6(x+6)hf(x)=limh0\cancelxh+\cancel6+\cancelx\cancel6hf(x)=limh0\cancelh\cancelhf(x)=limh01f(6)=1


f+(6)f(6); Therefore, f is not differentiable at 6.
We can find the formula for f using f(x)=1 and f(x)=1
Therefore, we can rewrite f(x) as

f(x)={1ifx61ifx<6

No comments:

Post a Comment