Determine the equation of the tangent line to the curve y=x−1x−2 at the point (3,2)
Using the definition (Slope of the tangent line)
We have a=3 and f(x)=x−1x−2, so the slope is
m=limx→3f(x)−f(3)x−3m=limx→3x−1x−2−(3−13−2)x−3 Substitute value of a and xm=limx→3x−1x−2−2x−3 Get the LCD and simplifym=limx→3−x+3(x−3)(x−2) Factor the numeratorm=limx→3−1\cancel(x−3)\cancel(x−3)(x−2) Cancel out like termsm=limx→3−1x−2=−13−2=−11=−1 Evaluate the limit
Therefore,
The slope of the tangent line is m=−1
Using point slope form
y−y1=m(x−x1)y−2=−1(x−3) Substitute value of x,y and my−2=−x+3 Combine like termsy=−x+5
Therefore,
The equation of the tangent line at (3,2) is y=−x+5
No comments:
Post a Comment