Thursday, April 12, 2012

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 5

Determine the equation of the tangent line to the curve y=x1x2 at the point (3,2)

Using the definition (Slope of the tangent line)

We have a=3 and f(x)=x1x2, so the slope is


m=limx3f(x)f(3)x3m=limx3x1x2(3132)x3 Substitute value of a and xm=limx3x1x22x3 Get the LCD and simplifym=limx3x+3(x3)(x2) Factor the numeratorm=limx31\cancel(x3)\cancel(x3)(x2) Cancel out like termsm=limx31x2=132=11=1 Evaluate the limit

Therefore,
The slope of the tangent line is m=1
Using point slope form


yy1=m(xx1)y2=1(x3) Substitute value of x,y and my2=x+3 Combine like termsy=x+5


Therefore,
The equation of the tangent line at (3,2) is y=x+5

No comments:

Post a Comment