Determine the integral ∫dxcosx−1x
∫1cosx−1⋅cosx+1cosx+1dx=∫cosx+1cos2x−1dxApply Trigonometric Identity cos2x−sin2x=1∫cosx+1sin2xdx=∫(−cosxsin2x−1sin2x)dx∫cosx+1sin2xdx=−∫(cotxcscx+csc2x)dx∫cosx+1sin2xdx=−(−cscx+(−cotx)+c)∫cosx+1sin2xdx=cscx+cotx+c
No comments:
Post a Comment