Monday, March 12, 2012

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 48

Determine the integral dxcosx1x


1cosx1cosx+1cosx+1dx=cosx+1cos2x1dxApply Trigonometric Identity cos2xsin2x=1cosx+1sin2xdx=(cosxsin2x1sin2x)dxcosx+1sin2xdx=(cotxcscx+csc2x)dxcosx+1sin2xdx=(cscx+(cotx)+c)cosx+1sin2xdx=cscx+cotx+c

No comments:

Post a Comment