Find $\displaystyle \lim_{t \to 0^+} \frac{A(t)}{B(t)}$
$\displaystyle A(t) = \int^t_0 \sin (x^2) dx$ while $B(t)$, using the area of triangle, $\displaystyle B(t) = \frac{1}{2} (t) \left( \sin (t^2) \right)$
So,
$\displaystyle \lim_{t \to 0^+} \frac{A(t)}{B(t)} = \lim_{t \to 0} \frac{\int^t_0 \sin (x^2) dx}{\frac{1}{2}t \sin (t^2)} = \lim_{t \to 0} \frac{2 \int^t_0 \sin(x^2)dx}{t \sin (t^2)}$
By applying L'Hospital's Rule...
$
\begin{equation}
\begin{aligned}
\lim_{t \to 0} \frac{2 \int^t_0 \sin(x^2)dx}{t \sin (t^2)}&= \lim_{t \to 0} \frac{2 \frac{d}{dt}\left( \int^t_0 \sin (x^2) dx \right)}{\frac{d}{dt}\left( t \sin (t^2) \right)}\\
\\
&= \lim_{t \to 0} \frac{2 \sin (t^2)}{t\left( \cos (t^2) \right)(2t)+(1)\sin (t^2)}\\
\\
&= \lim_{t \to 0} \frac{2 \sin (t^2) }{ 2t^2 \cos t^2 + \sin t^2}
\end{aligned}
\end{equation}
$
If we evaluate the limit, we will still get an indeterminate form, so we must apply L'Hospital's Rule once more. Thus,
$
\begin{equation}
\begin{aligned}
\lim_{t \to 0} \frac{2 \sin (t^2) }{ 2t^2 \cos t^2 + \sin t^2} &= \lim_{t \to 0} \frac{2 \cos (t^2)(2t)}{2 \left[ t^2 (-\sin t^2) (2t) + (2t)\cos t^2 \right] + (\cos t^2)(2t)}\\
\\
&= \lim_{t \to 0} \frac{4t \cos t^2}{-4 t^3 \sin t^2 + 4t \cos t^2 + 2t \cos t^2}\\
\\
&= \lim_{t \to 0} \frac{2t\left(2\cos t^2\right)}{2t \left( -2t^2 \sin t^2 + 2 \cos t^2 + \cos t^2\right)}\\
\\
&= \lim_{t \to 0} \frac{2 \cos t^2}{3 \cos t^2 - 2 t^2 \sin t^2}\\
\\
&= \frac{2\cos (0)^2}{3 \cos (0)^2 - 2(0)^2 \sin (0)^2}\\
\\
&= \frac{2(1)}{3(1) - 0}\\
\\
&= \frac{2}{3}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment