Find limt→0+A(t)B(t)
A(t)=∫t0sin(x2)dx while B(t), using the area of triangle, B(t)=12(t)(sin(t2))
So,
limt→0+A(t)B(t)=limt→0∫t0sin(x2)dx12tsin(t2)=limt→02∫t0sin(x2)dxtsin(t2)
By applying L'Hospital's Rule...
limt→02∫t0sin(x2)dxtsin(t2)=limt→02ddt(∫t0sin(x2)dx)ddt(tsin(t2))=limt→02sin(t2)t(cos(t2))(2t)+(1)sin(t2)=limt→02sin(t2)2t2cost2+sint2
If we evaluate the limit, we will still get an indeterminate form, so we must apply L'Hospital's Rule once more. Thus,
limt→02sin(t2)2t2cost2+sint2=limt→02cos(t2)(2t)2[t2(−sint2)(2t)+(2t)cost2]+(cost2)(2t)=limt→04tcost2−4t3sint2+4tcost2+2tcost2=limt→02t(2cost2)2t(−2t2sint2+2cost2+cost2)=limt→02cost23cost2−2t2sint2=2cos(0)23cos(0)2−2(0)2sin(0)2=2(1)3(1)−0=23
No comments:
Post a Comment