Sunday, March 11, 2012

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 98

Find limt0+A(t)B(t)



A(t)=t0sin(x2)dx while B(t), using the area of triangle, B(t)=12(t)(sin(t2))
So,
limt0+A(t)B(t)=limt0t0sin(x2)dx12tsin(t2)=limt02t0sin(x2)dxtsin(t2)

By applying L'Hospital's Rule...

limt02t0sin(x2)dxtsin(t2)=limt02ddt(t0sin(x2)dx)ddt(tsin(t2))=limt02sin(t2)t(cos(t2))(2t)+(1)sin(t2)=limt02sin(t2)2t2cost2+sint2

If we evaluate the limit, we will still get an indeterminate form, so we must apply L'Hospital's Rule once more. Thus,

limt02sin(t2)2t2cost2+sint2=limt02cos(t2)(2t)2[t2(sint2)(2t)+(2t)cost2]+(cost2)(2t)=limt04tcost24t3sint2+4tcost2+2tcost2=limt02t(2cost2)2t(2t2sint2+2cost2+cost2)=limt02cost23cost22t2sint2=2cos(0)23cos(0)22(0)2sin(0)2=2(1)3(1)0=23

No comments:

Post a Comment