A particle moves along a line so that its acceleration of time t is a(t)=2t+3 ( measured in ms2) with the initial velocity v(0)=−4.
a.) Find the velocity at time t
∫a(t)dt=∫(2t+3)dt∫a(t)dt=2∫tdt+∫3dt∫a(t)dt=2(t1+11+1)+3(t0+10+1)+C∫a(t)dt=\cancel2t2\cancelt+3t+C∫a(t)dt=t2+3t+C
We know that a(t)=v′(t), so
v′(0)=(0)2+3(0)+C=−4C=−4
Then the velocity at time t is
v(t)=t2+3t−4
b.) Find the distance traveled during the time period 0≤t≤3 we know that v(t)=t2+3t−4=(t+4)(t−1), then (t+4)(t−1)=0
t=−4 and t=1
Only t=1 is in the interval [0,3], thus the distance traveled is...
∫30|v(t)|dt=∫10−v(t)dt+∫31v(t)dt∫30|v(t)|dt=∫10(−t2−3t+4)dt+∫31(t2+3t−4)dt∫30|v(t)|dt=[−t33−3t22+4t]10+[t33+3t22−4t]31∫30|v(t)|dt=−(1)33−3(1)22+4(1)−[−(0)33−3(0)22+4(0)]+(3)33+3(3)22−4(3)−[(1)33+3(1)22−4(1)]∫30|v(t)|dt=−13−32+4+9+272−12−13−32+4∫30|v(t)|dt=896 metersor∫30|v(t)|dt=14.83 meters
No comments:
Post a Comment