Wednesday, February 22, 2012

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 58

A particle moves along a line so that its acceleration of time t is a(t)=2t+3 ( measured in ms2) with the initial velocity v(0)=4.
a.) Find the velocity at time t

a(t)dt=(2t+3)dta(t)dt=2tdt+3dta(t)dt=2(t1+11+1)+3(t0+10+1)+Ca(t)dt=\cancel2t2\cancelt+3t+Ca(t)dt=t2+3t+C

We know that a(t)=v(t), so

v(0)=(0)2+3(0)+C=4C=4


Then the velocity at time t is
v(t)=t2+3t4

b.) Find the distance traveled during the time period 0t3 we know that v(t)=t2+3t4=(t+4)(t1), then (t+4)(t1)=0
t=4 and t=1
Only t=1 is in the interval [0,3], thus the distance traveled is...

30|v(t)|dt=10v(t)dt+31v(t)dt30|v(t)|dt=10(t23t+4)dt+31(t2+3t4)dt30|v(t)|dt=[t333t22+4t]10+[t33+3t224t]3130|v(t)|dt=(1)333(1)22+4(1)[(0)333(0)22+4(0)]+(3)33+3(3)224(3)[(1)33+3(1)224(1)]30|v(t)|dt=1332+4+9+272121332+430|v(t)|dt=896 metersor30|v(t)|dt=14.83 meters

No comments:

Post a Comment