Friday, February 17, 2012

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 84

Find constants A,B and C such that the function y=Ax2+Bx+C
satisfies the differential equation y+y2y=x2.


y=Ax2+Bx+Cy=Addx(x2)+Bddx(x)+ddx(C)y=A(2x)+B(1)+0y=2Ax+By=2Addx(x)+ddx(B)y=2A(1)+0y=2A


Substituting these values to the differential equation,

y+y2y=x2


2A+2Ax+B2(Ax2+Bx+C)=x22A+2Ax+B2Ax22Bx2C=x22Ax2+(2A2B)x+(2A+B2C)=x2

Equating each power we get,
For x2:

2A=1A=12


For x:

2A2B=0\cancel2A=\cancel2BB=A=12


For constant,

2A+B2C=02(12)+(12)2C=0C=34

No comments:

Post a Comment