Find constants A,B and C such that the function y=Ax2+Bx+C
satisfies the differential equation y″+y′−2y=x2.
y=Ax2+Bx+Cy′=Addx(x2)+Bddx(x)+ddx(C)y′=A(2x)+B(1)+0y′=2Ax+By″=2Addx(x)+ddx(B)y″=2A(1)+0y″=2A
Substituting these values to the differential equation,
y″+y′−2y=x2
2A+2Ax+B−2(Ax2+Bx+C)=x22A+2Ax+B−2Ax2−2Bx−2C=x2−2Ax2+(2A−2B)x+(2A+B−2C)=x2
Equating each power we get,
For x2:
−2A=1A=−12
For x:
2A−2B=0\cancel2A=\cancel2BB=A=−12
For constant,
2A+B−2C=02(−12)+(−12)−2C=0C=−34
No comments:
Post a Comment