Friday, January 13, 2012

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 70

Find the integral 21(x1)3x2dx


21(x1)3x2dx=21x33x2+3x1x2dx21(x1)3x2dx=21(x3x23x2x2+3xx21x2)dx21(x1)3x2dx=21(x3+3x1x2)dx21(x1)3x2dx=21(x33xx2)dx21(x1)3x2dx=[x223x+3|n|x|+x1]2121(x1)3x2dx=(2)223(2)+3ln2+12[(1)223(1)+3ln1+11]21(x1)3x2dx=26+3ln2+1212+33(0)121(x1)3x2dx=3ln2221(x1)3x2dx=21

No comments:

Post a Comment