Find the integral ∫21(x−1)3x2dx
∫21(x−1)3x2dx=∫21x3−3x2+3x−1x2dx∫21(x−1)3x2dx=∫21(x3x2−3x2x2+3xx2−1x2)dx∫21(x−1)3x2dx=∫21(x−3+3x−1x2)dx∫21(x−1)3x2dx=∫21(x−3−3x−x−2)dx∫21(x−1)3x2dx=[x22−3x+3|n|x|+x−1]21∫21(x−1)3x2dx=(2)22−3(2)+3ln2+12−[(1)22−3(1)+3ln1+11]∫21(x−1)3x2dx=2−6+3ln2+12−12+3−3(0)−1∫21(x−1)3x2dx=3ln2−2∫21(x−1)3x2dx=∫21
No comments:
Post a Comment