Determine the equation of the tangent line to the curve y=2x3−5x at the point ( -1, 3)
Using the definition (Slope of tangent line)
m=limx→af(x)−f(a)x−aWe have a=−1 and f(x)=2x3−5x, So the slope is m=limx→−1f(x)−f(−1)x+1m=limx→−12x3−5x−[2(−1)3−5(−1)]x+1 Substitute value of a and xm=limx→−1(2x3−5x−3)x+1
Using Synthetic Division to obtain the factor of the numerator
m=limx→−1(2x2−2x−3)\cancel(x+1)\cancelx+1 Cancel out like termsm=limx→−1(2x2−2x−3)=2(−1)2−2(−1)−3 Evaluate the limit m=1
Using point slope form
y−y1=m(x−x1)y−3=1(x+1) Substitute value of x,y and my−3=x+1 Combine like termsy=x+4
Therefore,
The equation of the tangent line at (-1,3) is y=x+4
No comments:
Post a Comment