Tuesday, January 17, 2012

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 6

Determine the equation of the tangent line to the curve y=2x35x at the point ( -1, 3)

Using the definition (Slope of tangent line)


m=limxaf(x)f(a)xaWe have a=1 and f(x)=2x35x, So the slope is m=limx1f(x)f(1)x+1m=limx12x35x[2(1)35(1)]x+1 Substitute value of a and xm=limx1(2x35x3)x+1



Using Synthetic Division to obtain the factor of the numerator










m=limx1(2x22x3)\cancel(x+1)\cancelx+1 Cancel out like termsm=limx1(2x22x3)=2(1)22(1)3 Evaluate the limit m=1


Using point slope form


yy1=m(xx1)y3=1(x+1) Substitute value of x,y and my3=x+1 Combine like termsy=x+4



Therefore,
The equation of the tangent line at (-1,3) is y=x+4

No comments:

Post a Comment