Determine the average value of the function f(x)=sin4x on the interval [−π,π]
fave=1b−a∫baf(x)dxfave=1π−(−π)∫81sin4xdxLet u=4x, thendu=4dx
Also, make sure that the upper and lower limits are now in terms of u.
fave=12π(14)∫4(8)4(1)sinudufave=18π∫324sinudufave=18π[−cosu]324fave=18π[−cos(32)−(−cos(4))]fave=−0.059
No comments:
Post a Comment