Wednesday, November 9, 2011

Single Variable Calculus, Chapter 6, 6.5, Section 6.5, Problem 2

Determine the average value of the function f(x)=sin4x on the interval [π,π]


fave=1babaf(x)dxfave=1π(π)81sin4xdxLet u=4x, thendu=4dx


Also, make sure that the upper and lower limits are now in terms of u.


fave=12π(14)4(8)4(1)sinudufave=18π324sinudufave=18π[cosu]324fave=18π[cos(32)(cos(4))]fave=0.059

No comments:

Post a Comment