Sunday, November 27, 2011

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 56

A particle moves along a line so that its velocity at time t is v(t)=t22t8 (measured in meters per second).
a.) Find the displacement of the particle during the time period 1t6 from the formula.

t2t1v(t)dt=s(t2)s(t1)t2t1v(t)dt=61(t22t8)dt(t22t8)dt=t2dt2tdt8dt(t22t8)dt=t2+12+12(t1+11+1)8(t0+10+1)(t22t8)dt=t33\cancel2t2\cancel28t(t22t8)dt=t33t28t61(t22t8)dt=(6)33(6)28(6)[(1)33(1)28(1)]61(t22t8)dt=2163364813+1+861(t22t8)dt=72364813+961(t22t8)dt=103 meters or 3.33 meters


This means the particle moved 3.33m toward the left.
b.) Find the distance traveled during this time period
Note that v(t)=t22t8=(t4)(t+2) and then (t4)(t+2)=0
t=4 and t=2
Only t=4 is in the interval [1,6], thus, the distance traveled is...

61|v(t)|dt=41v(t)dt+64v(t)dt61|v(t)|dt=41(t2+2t+8)dt+64(t22t8)dt61|v(t)|dt=[t33+t2+8t]41+[t33t28t]6461|v(t)|dt=(4)33+(4)2+8(4)[(1)33+(1)2+8(1)]+[(6)33(6)8(6)[(4)33(4)28(4)]]61|v(t)|dt=643+16+32+1318+723648643+16+3261|v(t)|dt=983 meters  or 61|v(t)|dt=32.67 meters

No comments:

Post a Comment