Suppose the matrices $A, B, C, D, E, F, G$ and $H$ are defined as
$
\begin{equation}
\begin{aligned}
A =& \left[ \begin{array}{cc}
2 & -5 \\
0 & 7
\end{array}
\right]
&& B = \left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]
&&& C = \left[ \begin{array}{ccc}
2 & \displaystyle \frac{-5}{2} & 0 \\
0 & 2 & -3
\end{array} \right]
&&&& D = \left[ \begin{array}{cc}
7 & 3
\end{array} \right]
\\
\\
\\
\\
E =& \left[ \begin{array}{c}
1 \\
2 \\
0
\end{array}
\right]
&& F = \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
\right]
&&& G = \left[ \begin{array}{ccc}
5 & -3 & 10 \\
6 & 1 & 0 \\
-5 & 2 & 2
\end{array} \right]
&&&& H = \left[ \begin{array}{cc}
3 & 1 \\
2 & -1
\end{array} \right]
\end{aligned}
\end{equation}
$
Carry out the indicated algebraic operation, or explain why it cannot be performed.
a.) $3B + 2C$
$
\begin{equation}
\begin{aligned}
3 \left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]
+
2 \left[ \begin{array}{ccc}
2 & \displaystyle \frac{-5}{2} & 0 \\
0 & 2 & -3
\end{array} \right]
=&
\left[ \begin{array}{ccc}
9 & \displaystyle \frac{3}{2} & 15 \\
3 & -3 & 9
\end{array} \right]
+
\left[ \begin{array}{ccc}
4 & -5 & 0 \\
0 & 4 & -6
\end{array} \right]
\\
\\
\\
\\
=& \left[ \begin{array}{ccc}
9+4 & \displaystyle \frac{3}{2} - 5 & 15 + 0 \\
3+0 & -3+4 & -6+9
\end{array} \right]
\\
\\
\\
\\
=& \left[ \begin{array}{ccc}
13 & \displaystyle \frac{-7}{2} & 15 \\
3 & 1 & 3
\end{array} \right]
\end{aligned}
\end{equation}
$
b.) $2H + D$
$
\begin{equation}
\begin{aligned}
2 \left[ \begin{array}{cc}
3 & 1 \\
2 & -1
\end{array} \right] +
\left[ \begin{array}{cc}
7 & 3
\end{array} \right]
\end{aligned}
\end{equation}
$
$H + D$ is undefined because we can not add matrices of different dimensions.
No comments:
Post a Comment